Assessment of 2D and 3D fractal dimension measurements of trabecular bone from high-spatial resolution magnetic resonance images at 3 T

Angel Alberich-Bayarri
Department of Radiology, Hospital Quirón Valencia, Valencia 46010, Spain

Luis Martí-Bonmati
Department of Radiology, Hospital Quirón Valencia, Valencia 46010, Spain and Department of Radiology, Hospital Universitario Dr. Peset, Valencia 46017, Spain

Maria Angeles Pérez
Group of Structural Mechanics and Materials Modeling, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain

Roberto Sanz-Requena
Department of Radiology, Hospital Quirón Valencia, Valencia 46010, Spain

Juan José Lerma-Garrido
Department of Rheumatology, Hospital Quirón Valencia, Valencia 46010, Spain

Gracián García-Martí
Department of Radiology, Hospital Quirón Valencia, Valencia 46010, Spain and CIBER Mental Health Network, ISCIII, Valencia 46010, Spain

David Moratal
Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia 46022, Spain

(Received 23 November 2009; revised 31 May 2010; accepted for publication 9 July 2010; published 26 August 2010)

Purpose: In vivo two-dimensional (2D) fractal dimension (D_{2D}) analysis of the cancellous bone at 1.5 T has been related to bone structural complexity and shown to be a potential imaging-based biomarker for osteoporosis. The objectives of this study were to assess at 3 T the in vivo feasibility of three-dimensional (3D) bone fractal dimension (D_{3D}) analysis, analyze the relationship of D_{2D} and D_{3D} with osteoporosis, and investigate the relationship of D_{3D} with spinal bone mineral density (BMD).

Methods: A total of 24 female subjects (67 ± 7 yr old, mean ± SD) was included in this study. The cohort consisted of 12 healthy volunteers and 12 patients with osteoporosis. MR image acquisitions were performed in the nondominant metaphysis of the distal radius with a 3 T MR scanner and an isotropic resolution of 180 μm. After segmentation and structural reconstruction, 2D and 3D box-counting algorithms were applied to calculate the fractal complexity of the cancellous bone. D_{2D} and D_{3D} values were compared between patients with osteoporosis and healthy subjects, and their relationship with radius BV/TV and spinal BMD was also assessed.

Results: Significant differences between healthy subjects and patients with osteoporosis were obtained for D_{3D} ($p < 0.001$), with less differentiation for D_{2D} ($p = 0.04$). The relationship between fractal dimension and BMD was not significant ($r = 0.43$, $p = 0.16$ and $r = 0.23$, $p = 0.48$, for D_{2D} and D_{3D}, respectively).

Conclusions: The feasibility of trabecular bone D_{3D} calculations at 3 T and the relationship of both D_{2D} and D_{3D} parameters with osteoporosis were demonstrated, with a better differentiation for the 3D method. Furthermore, the D_{3D} parameter has probably a different nature of information regarding the trabecular bone status not directly explained by BMD alone. Future studies with subjects with osteopenia and larger sample sizes are warranted to further establish the potential of D_{2D} and D_{3D} in the study of osteoporosis. © 2010 American Association of Physicists in Medicine.

[DOI: 10.1118/1.3481509]

Key words: trabecular bone, magnetic resonance imaging, fractal dimension, image processing, osteoporosis
I. INTRODUCTION

Osteoporosis is a bone disorder that supposes a global concern affecting nearly 200 million people worldwide. This syndrome is characterized by a decreased density of the bone tissue and deterioration in the trabecular bone architecture, both factors inducing an increased bone fragility and higher fracture risk. Osteoporosis is prevalent in women, especially in postmenopausal ages, leading to pain and disability associated with bone fractures.

The diagnosis and monitoring of the disease is currently performed in the clinical setting by the quantification of the bone mineral density (BMD) by means of dual energy x-ray absorptiometry (DXA) technique. However, it has been demonstrated that not only the quantity of bone loss is important but also the heterogeneous nature of the trabeculae atrophy. Advances on computed tomography (CT), high-resolution peripheral quantitative computed tomography (HR-pQCT), and magnetic resonance imaging (MRI) have allowed the research of in vivo characterization of cancellous bone microarchitecture. The high inherent contrast between bone and bone marrow besides its nonionizing radiations place high field MRI as an especially suited technique for the in vivo structural characterization of trabecular bone.

Quantification of the trabecular bone has been mainly based on the calculation of morphometry measurements like apparent trabecular thickness (Tb.Th), apparent trabecular separation (Tb.Sp), apparent trabecular number (Tb.N), and apparent bone volume to total volume ratio (BV/TV), which have been shown to be a valuable tool in the study of the trabecular network. Other developed methods to virtually quantify topology, anisotropy, complexity, and mechanical response of the cancellous bone have also been investigated.

Trabecular shape and surfaces complexity appear to be altered under pathological conditions, with less irregular and less complex bone surfaces. Using the fractal theory, it is possible to quantify structures with complex form through the fractal dimension, a parameter that indicates how an irregular structure tends to fill space after the observation at different scales. Although there are a large number of definitions of the fractal dimension concept with different computation methods, the box-counting dimension, which is also known as Minkowski–Bouligand dimension, Kolmogorov capacity, or Kolmogorov dimension, has been widely extended in medical image processing due to the easiness of implementation.

Trabecular bone fractal dimension relationship with other bone quality parameters has been assessed in different studies by the application of the two-dimensional (2D) box-counting algorithm to images acquired with different modalities. However, only a reduced number of studies have analyzed the three-dimensional (3D) complexity of the trabecular bone network by a generalization of the box-counting algorithm to volumetric reconstructions obtained from multidetector row CT (MDCT) and synchrotron microtomography images. In MRI, the use of 3D algorithms for the quantification of trabecular bone properties has been limited at 1.5 T by the reduced achievable spatial resolution. However, at higher field strengths (e.g., 3 T), it is possible to improve the in vivo 3D characterization of the trabecular structure since isotropic voxels with higher spatial resolutions can be obtained without compromising the signal-to-noise ratio (SNR).

The objectives of this study were to assess at 3 T the in vivo feasibility of 3D bone fractal dimension (D3D) analysis, analyze the relationship of D2D and D3D with osteoporosis, and investigate the relationship of D2D and D3D with radius BV/TV and spinal BMD.

II. MATERIALS AND METHODS

II.A. Subjects

A total of 24 female subjects, with an age ranging from 54 to 80 yr old (67 ± 7 yr, mean ± SD), was included in the study after signing the corresponding informed consent. The study group comprises a cohort of 12 healthy subjects without history of bone diseases or bone fractures and a set of 12 patients meeting World Health Organization (WHO) criteria for the diagnosis of osteoporosis and reported bone fractures in the past 5 years, which were included in the group of patients with osteoporosis. Both healthy and osteoporotic populations were comparable regarding age (64 ± 7 yr vs 69 ± 7 yr, healthy vs osteoporotic; p = 0.06, Student’s t-test).
II.B. Magnetic resonance imaging

The metaphysis of the nondominant distal radius was imaged using a 3 T magnetic resonance (MR) scanner (Achieva, Philips Healthcare, Best, The Netherlands). The gradient system consisted of a Dual Quasar, with a slew rate of 200 mT/m ms$^{-1}$ and a maximal gradient strength of 80 mT/m. A four-channel phased-array surface coil especially designed for the wrist region was used for signal reception.

Images were obtained with a 3D spoiled T1-weighted gradient echo sequence (TE=5 ms, TR=16 ms, and FA=25°). The acquisition matrix size was of 512×512 pixels with 60 axial partitions. The slice thickness and pixel size were set to achieve isotropic voxels of 180 μm per edge. In order to improve SNR and contrast between bone and marrow, the number of acquisitions was set to 3, with a water-fat shift of 2.6 pixels (receiver bandwidth of 167.6 Hz/pixel). Parallel imaging techniques were used in the in-plane phase direction with an acceleration factor of 2 since they have been shown to be feasible in high-spatial resolution MRI acquisitions of the trabecular bone.\cite{21} The total acquisition time was 5 min and 42 s.

II.C. Bone mineral density

Areal BMD of lumbar spine was also obtained only for the osteoporotic patients at the L2-L3-L4 vertebrae using a DXA scanner (Norland XR-46, Norland Corp, Fort Atkinson, USA). The BMD analysis was not performed in the healthy control subjects since it was not indicated in the clinical workflow. Subjects did not present any bone disease or related symptoms, and therefore they skipped the step of BMD evaluation with the DXA technique. Measures of BMD were given in g/cm2.

II.D. Image processing

MR image processing and analysis were performed in a workstation (Quad Core at 2.83 GHz and 8 GB of RAM memory) using MATLAB R2007a (The MathWorks, Inc., Natick, MA). Processing was automatic, and human interaction was only required at the initial segmentation step. Data processing and analysis was around 10 min per subject.

Segmentation of the trabecular bone from MR images was performed by placing a rectangular region of interest (ROI) in the first slice corresponding to the most proximal position and thereafter propagated to the rest of slices. Segmented areas were verified to exclusively contain marrow and trabecular bone (Fig. 1).

Slight modulations of the signal intensities across the acquisition volume, also known as coil shading phenomena, were corrected with nearest-neighbor statistics by the application of an implemented 3D local thresholding algorithm, as a generalization from its 2D version.\cite{22} Marrow intensity values in the neighborhood of each voxel were determined and bone voxel intensities were scaled using calculated local intensities. Concretely, the method is based on the calculation of the average Laplacian values $\langle \tilde{L} \rangle(I)$ in a sphere region $S(\tilde{r})$ with a radius $R=15$ pixels, with I being the voxel intensity and \tilde{r} the center of the sphere, which is displaced through all voxels of the volume. When the calculated Laplacian equals zero $\langle \tilde{L} \rangle(I(\tilde{r}))=0$, the corresponding marrow intensity $I(\tilde{r})$ can be determined locally. After the marrow intensity is obtained, it is used as a threshold and voxels can be directly classified into pure marrow voxels or scaled by its intensity and r can be determined locally. After the marrow intensity is obtained, it is used as a threshold and voxels can be directly classified into pure marrow voxels or scaled by its intensity and thereby propagated to the rest of slices.

The extreme conditions in terms of low SNR and partial volume effects due to larger voxel size than typical thickness
of the trabeculae, which is about 100–150 μm, forced the implementation of a method to increase the reconstructed spatial resolution. A subvoxel-processing algorithm was implemented to minimize partial volume effects and to improve the cancellous bone structural quantification from MRI. The method consisted of a two-pass algorithm where each voxel was initially divided into eight subvoxels, which are assigned a level of intensity conditioned by the corresponding level of their voxel and near subvoxels, and also under the assumption that the amount of bone intensities must be conserved. In the first pass of the algorithm, each subvoxel was assigned an intensity value, depending on the intensities of the adjacent voxels and the local sum of intensities. The second pass of the algorithm consisted of the refinement of the previously calculated subvoxel intensities considering the intensities of the neighboring subvoxels and the total amount of intensity conservation. Finally, an increased apparent isotropic spatial resolution of 90 μm was achieved and partial volume effects were minimized (Fig. 2).

The resulting images were binarized into exclusively bone or marrow voxels (Fig. 2). Histogram shape-based thresholding was implemented through the Otsu’s method implemented in 3D. The method consists of the minimization of the intraclass variance of volume intensities, which has been shown to be equivalent to maximizing the between-class variance. Thus, the optimum separation threshold was calculated for the entire volume using

$$t^* = \arg \max_{t} \frac{\sigma_B^2}{\sigma_T^2},$$

where σ_T^2 is the total variance and σ_B^2 is the between-class variance. The optimum binarization threshold is t^*. Finally, voxels were classified as bone or marrow, depending on their intensity value. The corresponding BV/TV parameter of the processed volumes was directly calculated from this step since it was straightforward.

II.E. Fractal analysis

In order to calculate the trabecular bone D_{3D}, the conventional box-counting algorithm was implemented. A slice-by-slice contour detection routine implemented in MATLAB was included at the beginning of the code. For each slice, grids of different sizes were sequentially overlaid to the contour image. The total amount of grid boxes containing boundary pixels was calculated for each box size and stored in a vector. Box sizes were powers of 2 and the maximum box size was the smallest power of 2 above the largest dimension of the contour image. Once the number of boxes containing contour was obtained for each grid size, data were fitted by least mean squares according to

$$\log(N) = -D \log(\lambda) + \log(\alpha).$$

Equation (1) gives the relationship between the number of contour boxes (N), the corresponding box size (λ), the box-counting fractal dimension parameter (D), and a proportionality constant (α). Geometrically, D corresponds to the negative value of the slope of the line relating the natural logarithms of the number of boxes containing contour and each corresponding box sizes. The fractal dimension was calculated for each slice and the results were averaged in order to calculate the D_{3D} parameter of each scan. The 2D box-counting algorithm implemented for the quantification of 2D fractal complexity was validated by its application to the Sierpinski triangle figure, which has a known fractal dimension of $\log(3)/\log(2) = 1.585$.

A generalized version of the box-counting algorithm was also developed and implemented for the quantification of the 3D trabecular bone complexity. The box-counting algorithm previously used for 2D calculations was herein extrapolated to the 3D space domain. Trabeculae surfaces were computed by the marching-cube algorithm before the application of the 3D box-counting method (Fig. 3). Different 3D cube meshes with varying cube sizes were generated and mixed with the 3D reconstruction of the trabecular bone surfaces. Analogously, the number of cubes containing trabecular surface was calculated for each cube size and stored in a vector. Cube size dimensions were generated similar to the 2D method and the maximum cube size was the smallest power of 2 over the largest dimension of the 3D surface matrix. The D_{3D} parameter was directly calculated by least mean squares fitting of the data to Eq. (1). The 3D box-counting method implemented was also validated by its application to the Menger sponge structure, which is characterized by a theoretical fractal dimension of $\log(20)/\log(3) = 2.727$.

II.F. Statistical analysis

The statistical analysis was performed in SPSS 13.0 for Windows (SPSS, Inc., Chicago, IL). The ages and 2D and 3D fractal dimension parameters had a normal distribution (Kolmogorov–Smirnov test, $p > 0.05$). The results are expressed as mean ± SD.

A comparison of the D_{2D} and D_{3D} values between the healthy and the osteoporotic populations was performed by
the Student’s t-test distribution for independent samples with Levene’s test for the equality of variances. The limit of significance was set at $p < 0.05$.

In order to evaluate the age influence of the results for D^{2D} and D^{3D} between the healthy and the osteoporotic groups, the effect of including age as a covariable in a linear general model analysis was also tested. The relationship between the results of 2D and 3D fractal dimension parameters, radius BV/TV, and the spinal BMD for the osteoporotic patients was analyzed by a linear regression with the Pearson’s product-moment correlation coefficient.

III. RESULTS

All MR acquisitions were valid for the calculation of D^{2D} and D^{3D} parameters. Significant differences were found for the D^{3D} parameter between the healthy and the osteoporotic populations ($p < 0.001$) with higher values in the healthy group than in the osteoporotic group (2.33 ± 0.04 vs 2.27 ± 0.03, healthy vs osteoporotic; mean \pm std). Although with less statistical significance, a clear dissimilarity was observed between the healthy and osteoporotic patients ($p = 0.04$) for the D^{2D} parameter, with also higher values in the healthy group than in the osteoporotic population (1.55 ± 0.03 vs 1.50 ± 0.06, healthy vs osteoporotic; mean \pm std). However, variances showed a trend to dissimilarity in this case ($p = 0.08$). A representation of the result distribution for D^{2D} and D^{3D} in the healthy and osteoporotic groups can be observed in Fig. 4.

The differences for the D^{2D} and D^{3D} parameters were analyzed also with age influence correction on the results. No significant relationships were found between D^{2D}, D^{3D}, and age ($r = -0.02$, $p = 0.94$ and $r = -0.31$, $p = 0.18$; D^{2D} vs age, D^{3D} vs age). Significant differences were found between the healthy group and the patients with osteoporosis after correction for age is applied to the D^{3D} parameter ($p < 0.001$). Also, a clear separation was obtained for the D^{2D} parameter with an increased significance ($p = 0.02$) in comparison to the results obtained without age correction.

The BV/TV values obtained were higher in the healthy population than those obtained in the group of osteoporotic patients ($21.9 \pm 1.9\%$ vs $21.1 \pm 1.3\%$, healthy vs osteoporotic); however, there were no significant differences between groups ($p = 0.29$).

A significant relationship was found between distal radius BV/TV parameter and spinal BMD (regression analysis; $r = 0.64$, $p = 0.02$). No significant association was observed between D^{2D}, D^{3D}, and BV/TV results (regression analysis; $r = 0.34$, $p = 0.13$ and $r = 0.30$, $p = 0.19$; D^{2D} vs BV/TV, D^{3D} vs BV/TV). In patients with osteoporosis, the relationship between fractal dimensions and BMD showed that the D^{2D} parameter was not significantly related to the spinal BMD measurements (regression analysis; $r = 0.43$, $p = 0.16$). However, a modest trend to a relationship was appreciated. The D^{3D} results also showed no association with the spinal BMD measurements (regression analysis; $r = 0.23$, $p = 0.48$), with a lower significance than D^{2D}.

IV. DISCUSSION

In this study, we have assessed the feasibility of 2D and 3D fractal analysis methods for the in vivo characterization of the trabecular bone structural complexity. Image processing techniques and box-counting algorithms have been implemented in order to quantify the D^{2D} and D^{3D} parameters of the cancellous bone from high-spatial resolution 3 T MRI acquisitions of the distal radius metaphysis. The D^{2D} and D^{3D} parameters have been found to significantly differentiate between healthy and osteoporotic conditions; furthermore, D^{3D} has shown better discrimination ($p < 0.001$) between the healthy volunteers and the osteoporotic patients than D^{2D} ($p = 0.04$). The D^{2D} and D^{3D} measurements were compared to radius BV/TV and spinal BMD results in the osteoporotic patients and no significant relationships were found, showing that D^{2D} and D^{3D} results probably provide a different kind of information complementary to the spinal BMD obtained with the current DXA examinations.

The calculation of D^{3D} values from high-spatial resolution...
MRI measurements of trabecular bone was found to be feasible if applied after proper image processing and efficient contour detection algorithms. A low processing time was achieved easing the integration of the method in an automated trabecular bone fractal characterization processing sequence. To our knowledge, the application of 3D fractal measurements to the study of trabecular bone from MR acquisitions has not been previously investigated.

The values obtained for the \(D_{3D} \) were significantly different between the healthy and osteoporotic groups \((p < 0.001) \), with lower values in the osteoporotic population (Fig. 4). In this sense, Ito et al.\(^4\) obtained significant differences for the MDCT-derived \(D_{3D} \) parameter between women with and without history of osteoporotic fractures \((p < 0.001) \). Although with less significance, the \(D_{2D} \) results showed a clear statistical differentiation between both groups \((p = 0.04) \) (Fig. 4). This finding is comparable to the obtained by Majumdar et al.\(^{19}\) where the \(D_{2D} \) parameter was found to be slightly different between healthy and osteoporotic postmenopausal populations \((p = 0.01) \) with lower values in the women with osteoporosis \((1.43 \pm 0.11 \text{ vs } 1.55 \pm 0.03, \text{healthy}; 1.34 \pm 0.17 \text{ vs } 1.50 \pm 0.06, \text{osteoporotic}; \text{Majumdar et al. vs our results, respectively}) \). These significant differences were detected even with the large slice thickness of their acquisition, which was of 700 \(\mu \text{m} \) at a 1.5 T scanner. On the contrary, Hudelmaier et al.\(^{25}\) did not observe significant differences between the results of the \(D_{2D} \) in a group of healthy volunteers compared to a group of patients with osteoporosis \((1.72 \pm 0.03 \text{ vs } 1.71 \pm 0.03, p > 0.05; \text{healthy vs osteoporotic, respectively}) \). Their in-plane spatial resolution \((156 \mu \text{m}) \) was exactly the same as that used by Majumdar et al.;\(^{19}\) however, slice thickness was smaller \((300 \mu \text{m}) \). Although in the calcaneus, Link et al.\(^{26}\) found significant differences in the \(D_{2D} \) parameter between healthy and osteoporotic postmenopausal women \((p = 0.007) \) with lower values in the osteoporosis cases \((1.66 \pm 0.06 \text{ vs } 1.61 \pm 0.04, \text{healthy vs osteoporotic, respectively}) \). As several different definitions exist for the fractal dimension parameter, the used algorithm or method must always be carefully specified. Some authors found similar values with MR but several methodological differences exist between studies and an effective comparison of the results is not possible.\(^{27}\) In this sense, in the works mentioned above\(^{19,25,26}\) the box-counting algorithm was used for \(D_{2D} \) calculation, while the analysis of Pothuaud et al.\(^{10}\) was based on the fractional Brownian motion model and the evaluation of porosity was implemented by numerical dilation and removal processes to the 2D trabecular bone images.

The BV/TV from the distal radius trabecular bone showed a significant relationship with the spinal BMD, explaining a direct association between the bone density values at both locations. The BV/TV values showed no statistically significant differences between healthy and osteoporotic groups and were not significantly related to \(D_{2D} \) and \(D_{3D} \). Despite the clear relationship between radius BV/TV and spinal BMD, the \(D_{2D} \) presented no significant relationship with the spinal BMD measurements performed in the patients group \((r = 0.43, p = 0.16) \), although a modest trend to the association was observed. The \(D_{3D} \) also had no apparent relationship with the BMD measurements, with a lower association with BMD than \(D_{2D} \) \((r = 0.23, p = 0.48) \), which could be preliminarily explained by the different structural information that might provide a 3D approach to the calculation of the fractal dimension compared to \(D_{2D} \) measurements. However, this conclusion should be considered as preliminary since the parameters have been measured at different locations. The work developed by Hudelmaier et al.\(^{25}\) also found that the \(D_{2D} \) parameter was not related to BMD measurements (whereas other parameters like BV/TV or Tb.Th showed a relationship) and confirmed the independent information provided by \(D_{2D} \) if compared to BMD.

Our results suggest that for the fractal characterization of bone trabeculae complexity, a 3D approach should be used instead of the 2D box-counting algorithm. The data distribution variance in healthy and osteoporotic populations is more uniform for the 3D than in the 2D approach. In 2D, more dispersion is obtained in the patients group. The different variances observed in both parameters, with less data dispersion in the 3D approach, express that the \(D_{3D} \) is more accurate than the \(D_{2D} \) data for osteoporosis diagnosis.

The principal orientation of the trabecular bone in the radius corresponds to the longitudinal dimension.\(^{26}\) If axial images are acquired with anisotropic spatial resolution, that is, with a slice thickness larger than the in-plane high-spatial resolution, the main orientation of the trabecular bone is being clearly underestimated. Even more, if a 2D approach is used for the fractal characterization, with the results averaged with all the slices, the main alignment direction of the trabeculae is also not taken into consideration. The combination of high-spatial isotropic resolutions in the acquisition of the images combined with a 3D postprocessing algorithm seems to be the most appropriate configuration for an efficient fractal characterization of the trabecular bone. Compared to 1.5 T, the high-spatial resolution images achievable with 3 T magnets in all three directions together with the increased SNR have allowed the implementation of \(D_{3D} \) quantification algorithms.

Some bias should be commented. First, the study cohort was small and only patients with osteoporosis but not osteopenia were included. Therefore, an analysis of the relationship between fractal dimensions and trabecular bone status of patients at initial stages of the disease could not be performed. A larger and better defined study cohort with different stages of the disease including additional data like the number of vertebral fractures would be relevant. This analysis would improve our knowledge about the behavior of the \(D_{2D} \) and \(D_{3D} \) parameters when cancellous bone structure starts to degenerate. Second, although age distributions of both groups analyzed (healthy vs osteoporotic) are not significantly different, a clear tendency to a difference existed, with higher ages in the group of osteoporotic patients. The influence of the age on the results was evaluated using a linear general model and significant differences were maintained between healthy and osteoporotic in the corrected sta-

In conclusion, 2D and 3D implemented methods for the calculation of the fractal dimension parameter may be used for the fractal characterization of the trabecular bone network. Both D^{2D} and D^{3D} parameters were found to be influenced by the disease, with a better differentiation for the 3D method. Finally, the D^{3D} parameter has probably a different substrate regarding the trabecular bone status not explained by the BMD alone. These results may set the 3D approach combined with high resolution MRI as the recommended method for the in vivo fractal dimension characterization of the trabecular bone structure in patients with osteoporosis.

ACKNOWLEDGMENTS

The authors would like to thank the following financial support: Vicerectorat d’Innovació i Desenvolupament of the Universitat Politècnica de València (Contract No. PAID-06-07/3104), Groups Emergentes—Generalitat Valenciana (Grant No. GV/2009/126), Instituto de la Mediana y Pequeña Industria Valenciana (IMPIVA) of the Generalitat Valenciana (Contract No. IMIDTP/2009/334), and Spanish Ministry of Science through Project No. TEC2009-14128.

1aAuthor to whom correspondence should be addressed. Electronic mail: aalberich.val@quiron.es; Telephone: +34963904005; Fax: +34963391147.

16B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

